Past Papers
Multimedia
Forum
QuizHub
Tutorial
School
Last update: 2025-07-21
Viewed: 7
Crash report

Colors of light

Colors of light

2025-07-21
7
Crash report
  • Unit 1: Particles & Pressure
  • Unit 2: Forces & Motion
  • Unit 3: Energy & Heat
  • Unit 4: Electricity
  • Unit 5: Magnetism & Electromagnetism
  • Unit 6: Waves: Sound & Light
  • Unit 7: Scientific Investigations

In this topic you will:

  • discover what happens when colours of light are added
  • discover what happens when colours of light are subtracted
  • discover why we see different colours.
 

Key words

  • absorbed
  • coloured filters
  • cyan
  • magenta
  • non-luminous
  • primary colours
  • subtraction
  • transmit
 

Primary colours

In Topic 3.3 you learned that there are seven colours in white light. These are the colours that can be seen in the rainbow.

However, there are three colours of light from which all other colours of light can be made. These are called the primary colours. The primary colours cannot be made by mixing any other colours of light.

The primary colours of light are:

Red
Green
Blue

The primary colours of light are different from the primary colours in paints. The colours in light mix differently from the colours in paint.

Adding colours of light

The diagram shows what happens when three beams of light, each of a different primary colour, overlap.

You can see the effect of adding the primary colours:

  • red + green = yellow
  • red + blue = magenta
  • blue + green = cyan
  • red + green + blue = white

The different colours that you see on a mobile phone, computer or television are all produced from combinations of the three primary colours of light.

When you look very closely at some types of computer monitor, television or phone screen, you can see the individual sources of red, green and blue light.

Overlapping coloured beams show how primary colours mix
Close-up of a television screen showing the sources of the primary colours of light
The colours on this phone display are made by adding the three primary colours of light

 

 

Common mistake

Don’t confuse the primary colours of light (red, green, blue) with the primary colours of paint (red, yellow, blue). They mix in different ways and produce different results.

 

When you look at a television or phone screen, you see far more colours than just red, green, blue, cyan, magenta, yellow and white. Most screens can display 256 different colours. Changing the brightness of the primary colours makes all these different colours. For example, orange is made by adding red and green, but with the red brighter than the green.

Research has shown that 256 is the maximum number of colours that most people can see.

Subtracting colours of light

You have probably used a filter in your chemistry lessons. Filters are used to remove something from a mixture.

You can also use coloured filters to remove colours from light.

If a transparent piece of coloured glass or plastic is placed in front of a white light, then only light of that colour will be transmitted (get through). All the other colours will be absorbed.

A common example of coloured filters is in traffic lights.

The traffic lights use three identical white lamps. In front of each lamp is a coloured filter for red, yellow or green.

These traffic lights use coloured filters

Take the red filter as the example to see how this works.

White light, from the lamp, is made from the seven colours of light: red, orange, yellow, green, blue, indigo and violet.

When these seven colours arrive at the red filter, only red is transmitted. The other six are absorbed. This is shown in the diagram.

Diagram showing subtraction of all colours except red

This is an example of subtraction of light. White light has had six colours subtracted to leave only red.

In the traffic lights, the yellow and green filters work in exactly the same way. Each of them absorbs six colours and only transmits one colour.

 

Important concept

A coloured filter works by absorbing all colours of light except one. The colour that is not absorbed is transmitted and seen by your eyes.

 

The blue stage light in the picture has a white lamp and a blue filter. If you look carefully, you can see where the white lamp is inside the black case.

The colours of the filters in stage lights can be changed to produce different colours.

Photographers sometimes use coloured filters on a camera to get different effects.

This stage light is using a white lamp and a blue filter
This is the effect of looking through a cyan cellophane filter

As with numbers, it is possible to subtract colours of light until the end result is zero.

For example, if white light shines on a green filter, only green light will get through. The other colours of the white light are absorbed.

If this green light then shines on a red filter, then no light will get through. That is because green is one of the colours that a red filter absorbs.

The result of using two different coloured filters

 

 

Quick fact

Filters work by absorbing certain colours of light and letting others through. Using two filters in a row can block all light if each absorbs what the other lets through.

 

Seeing colours

When you look at a non-luminous object, you see the light that is reflected from the object. Non-luminous means the object does not emit its own light.

Look at the flower in the picture.

The flower reflects yellow light and absorbs all other colours

The flower is seen in white light. The flower looks yellow because it reflects only yellow light. The flower absorbs the other six colours in white light. This is shown in the diagram.

A white object reflects all the colours in white light equally.

A black object absorbs all the colours in white light and does not reflect any.

These three balls appear black, red or white, according to which colours of light they reflect and which they absorb.

The appearance of objects depends on which colours of light they reflect

 

 

Important concept

An object’s colour depends on which wavelengths of light it reflects. If it reflects only one colour and absorbs the others, that’s the colour you see.

 

Look at the two cubes in the diagrams.

Red objects only reflect red light, and blue objects only reflect blue light. They absorb all other colours.

So, in white light, the red cube appears red and the blue cube appears blue.

In blue light, the red cube appears black: there is no red light for it to reflect, and the blue light is absorbed.

In red light, the blue cube appears black for the same reason – it absorbs the red light and does not reflect any light.

A: blue and red cubes seen in white light
B: blue and red cubes seen in blue light
C: blue and red cubes seen in red light

 

 

Common mistake

Objects don’t “have” a colour — they reflect certain colours and absorb the rest. An object’s appearance changes depending on the light that shines on it.

 

Questions

1. List the three primary colours of light.
Show Answer

Red, green, blue

2. Name the colour produced when:
a. red light and blue light are added together
Show Answer

Magenta

b. red light and green light are added together
Show Answer

Yellow

c. red, green and blue lights are added together
Show Answer

White

3. A stage light uses a white lamp. What colour of light will be seen when:
a. a yellow filter is used
Show Answer

Yellow

b. an orange filter is used
Show Answer

Orange

4.
a. A green ball appears green. What two colours of light could each be shining on the green ball?
Show Answer

Green, white

b. A blue ball appears black. What two colours of light could each be shining on the blue ball?
Show Answer

Red, green

5. A T-shirt looks red. What could explain this?
Write three letters.
A. The T-shirt is red and is seen in white light.
B. The T-shirt is red and is seen in red light.
C. The T-shirt is blue and is seen in green light.
D. The T-shirt is white and is seen in red light.
E. The T-shirt is yellow and is seen in blue light.
Show Answer

A, B, D

 

Think Like a Scientist

Identify the colour
In this investigation, you will make predictions about colours and light. You will work independently.

You will need:

  • white paper and coloured paper
  • coloured pens
  • flashlights
  • coloured filters
  • a room that can be darkened

Method 1

  1. Write the names of some colours on a piece of coloured paper using different coloured pens. The colours do not have to match correctly.

    For example, on yellow paper, write:
    • ‘blue’ with blue pen
    • ‘red’ with green pen
    • ‘green’ with blue pen
  2. Use the flashlight and a red filter to illuminate the paper.
  3. Ask someone from a different group to identify:
    • the colour of the paper
    • the words that are written in the correct colours
    • the colours of pen used to write the other words
  4. Vary the words, the colours of the pens, the colours of the paper and the colours of the filters, and repeat steps 1–3.

Questions

1. Which colour combinations were easiest to get correct?
Show Answer

Combinations with high contrast (e.g. dark pen on light paper) and no filter were easiest.

2. Which colour combinations were most difficult to get correct?
Show Answer

Combinations with low contrast or where the filter removed key colour information were hardest.

 

Self-assessment

1. What parts of this topic are easiest to understand?
2. What parts of this topic are most difficult to understand?
3. What part of this topic could you teach to someone else?